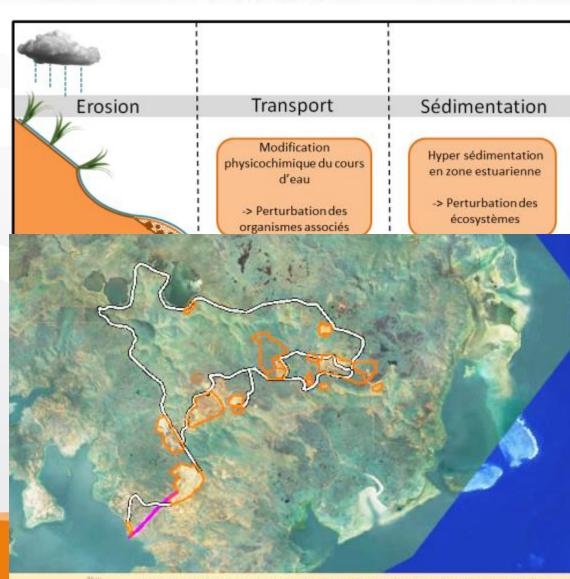


Améliorer le suivi de la pression érosion sur les milieux naturels: étude du site de Goro

- Contexte et objectifs
- Méthode
- Évaluation des suivis actuels
- Principales recommandations
- Pistes pour de nouveaux indicateurs
- Synthèse
- Perspectives


- Missions de l'OEIL: Surveillance, optimisation et information
- Suivi environnemental : outil indispensable à la gestion
- Érosion = Principale pression engendrée par l'activité de mine à ciel ouvert
 - Destruction de la végétation et des sols
 - →Sols = ressource naturelle non renouvelable (FAO, 2012)
 - Modification de l'hydrologie du bassin versant
 - → Accroissement du phénomène d'érosion

 Phénomène transversal et complexe nécessitant la mise en place d'un plan de suivi adapté

 Site de Goro: Plans de suivi fruit d'une réflexion scindée (par milieu et par installation)

Problématique:

Les plans de suivis permettent-ils de suivre l'ensemble des pressions associées à l'érosion générée par l'activité minière? Si oui, quelle évolutions sont

constatées?

Les suivis permettent-ils de différencier l'origine anthropique?

Quelles sont les pistes d'optimisation de ces suivis?

Zone d'étude: zone d'influence de Vale NC (BV Kwé principalement)

Objectifs de l'étude:

- →Obj. 1 Évaluer les suivis actuels (règlementaires et volontaires)
- →Obj. 2 Analyser les tendances issues de ces suivis
- →Obj. 3 Identifier les améliorations possibles pour optimiser ces suivis
- →Obj. 4 Donner des pistes de développement pour l'élaboration de nouveaux indicateurs de suivi des pressions associées à l'érosion

Méthode

Visite du site, échanges,

Étude biblio: 170 rapports et (études d'impacts, rapports et données de suivis environnementaux, inventaires) Vale NC, prestataires, instituts de recherche (IRD, IRSTEA, etc.).

Groupe d'experts:

Nicolas BARGIER (ASCONIT CONSULTANTS) : Écosystèmes eau douce (coordinateur scientifique du projet)

Tony AGION (ASCONIT CONSULTANTS): Environnement marin Pascal PODWOJEWSKI (IRD): Pédogenèse, chimie, minéralogie et physique des sols

Jean-Pierre BRICQUET (IRD): Hydrologue

Yannick DOMINIQUE (BIOEKO): Écosystèmes eau douce

Sandrine JOB (Consultante indépendante): Environnement marin

Assistance à maitrise d'ouvrage: unité ETNA de l'IRSTEA

SOL

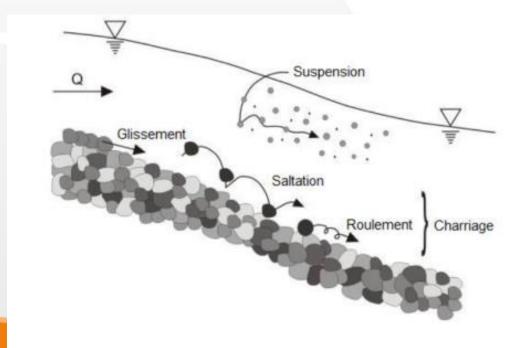
Surface de sol dénudé *
Couverture végétale*

EAUX CONTINENTALES

Météorologie
Limnimétrie
Physico-chimie de l'eau
Physico-chimie des sédiments
Transport solide
Indicateurs biologiques

EAUX COTIERES ET MARINES

Physico-chimie de la colonne d'eau
Physico-chimie des sédiments
Flux de particules dans la colonne d'eau
Accumulation sédimentaire (carottage)
Habitats coralliens
Peuplements biologiques (ichtyofaune et macrobenthos)
Bioaccumulation/ cagging


Critères d'analyse: Paramètres, Méthode, Fréquence, Stations

Nombreux suivis réalisés pouvant apporter des informations relatives à l'érosion

Certains pans du suivi manquants

- Pas de réel suivi de la dégradation des sols (évaluations ponctuelles)
- Suivi des flux de matériaux charriés

Nombreux suivis réalisés pouvant apporter des informations relatives à l'érosion

Certains pans du suivi manquants

- Pas de réel suivi de la dégradation des sols (évaluations ponctuelles)
- Suivi des flux de matériaux charriés

Manque de précision/représentativité

- Fréquence d'acquisition inadaptée et couverture spatiale insuffisante: pluviométrie, limnimétrie
- Estimation des débits jugée imprécise (seuils non calibrés, précision?)
- Design du plan de suivi non optimal/ absence de référence (suivis hydrosédimentaires et des sédiments)
- Pas de qualification des lots de données mis à disposition (existe désormais)

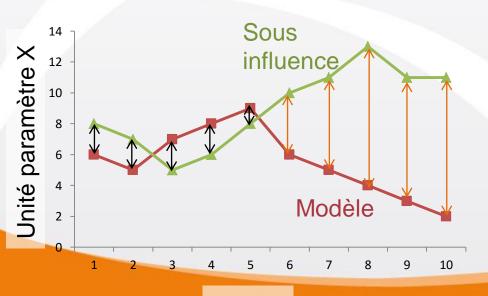
Suivis/traitements non adaptés au suivi de l'érosion

- Analyse granulométrique des sédiments, Carotte sédimentaire (marin), bioaccumulation/cagging (marin), suivi physicochimique eau (marin)
- Rapportage réglementaire et analyse des données

Obj. 2 Analyse des tendances non réalisée en raison des limites énoncées précédemment et de difficultés d'exploitation des lots de données extraits (formats)

→ Amélioration de la représentativité des suivis par rapport à la dynamique spatio-temporelle du phénomène d'érosion dans l'environnement

BACIPS



→ Amélioration de la représentativité des suivis par rapport à la dynamique spatio-temporelle du phénomène d'érosion dans l'environnement

BACIPS

→ Amélioration de la représentativité des suivis par rapport à la dynamique spatio-temporelle du phénomène d'érosion dans l'environnement

- → Utilisation du modèle comme d'un système de référence
- Écart aux valeurs du modèle → caractérisation des perturbations
- Optimise la gestion environnementale (ciblage de zones contributrices, estimation de l'efficacité d'ouvrages, prédictions...)
- Possibilité à terme de réduire les efforts d'échantillonnage

Stratégie : modéliser pour apprécier la dégradation ou la résilience

Equation RUSLE (Renard 1997)

A: est le taux annuel de perte en sol en t/ha/an ;

R: est le facteur de l'érosivité des pluies ; il correspond à la moyenne annuelle des sommes des produits de l'énergie cinétique de la pluie par son intensité en 30 mn consécutives ; il est exprimé en MJ.mm / ha.h.an;

K: est l'érodibilité des sols ; il dépend de la texture, de la quantité de matière organique de la perméabilité et de la structure du sol ; il est exprimé en t.ha.h / ha.MJ.mm ;

LS: est un facteur sans dimension qui représente l'inclinaison (S en %) et la longueur de pente (L en m);

C: est un facteur sans dimension qui représente l'effet de la couverture végétale;

P: facteur sans dimension, est un rapport qui tient compte des pratiques antiérosives telles que les plantations ou alignements de cailloux en courbes de niveau.

Plan de suivi suggéré Etat 1. Vulnérabilité à la perte de Suivi 2. Surface de sol dénudé Suivi 3. Couverture végétale Suivi 6. Règle topographique Suivi 7. Erosion des ravines Suivi 8. Parcelles de ruissellement Suivis 9. Physico-chimie eau et sédiments (Quantification des MES) Suivi 10. Piège à sédiment Suivi 11. Bassin de décantation minier

Utilisati-

on pour


modèle

•


Priorité 2

Priorité/Intérêt

Priorité 1

R&D

Suivi existant

Α

adapter

Α

conserver

Suivi à

créer

Obj. 4 Pistes pour de nouveaux indicateurs

Sur les sols :

 la caractérisation des pédosignatures, sortent « d'empreintes digitales des sols » qui permettent de retracer l'origine d'un sédiment (Travaux de la mine au lagon, 2016) (valable pour les milieux aquatiques).

Sur le milieu dulçaquicole :

- IBS (macroinvertébrès) = seul bioindicateur validé pour le territoire. DCE recommande l'utilisation d'au moins 2 bioindicateurs pour définir l'état écologique d'une station.
- Indicateurs diatomées en cours de développement (mi-2017)
- Utilisation du biofilm (dosage des métaux)

Sur le milieu marin :

- l'usage de nouveaux suivis géophysiques par survols aériens des panaches turbides et zone de sédimentation fortes,
- suivis des biocénoses marines notamment en s'intéressant au recrutement corallien, la diversité spécifique, aux maladies coraliennes.

- Nombreux suivis environnementaux réalisés mais des améliorations à porter sur l'existant (Fréquence d'acquisition, couverture spatiale)
- Des pans du suivi de l'érosion manquants à compléter

Obj 2. Analyser les tendances issues de ces suivis :

- Analyse des tendances non réalisées en raison des limites sur les suivis menés et des difficultés d'exploitation des lots de données extraits (formats)
- Procédure de qualification des données à préciser

Obj 3. Identifier les améliorations possibles pour optimiser ces suivis :

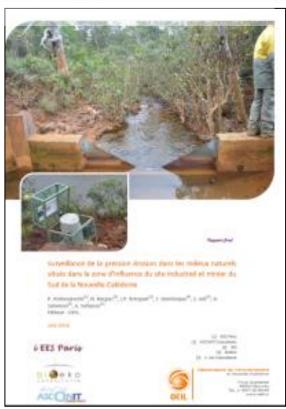
- Nombreuses recommandations pour assurer la représentativité spatio-temporelle des phénomènes d'érosion
- Une proposition de stratégie de surveillance reposant sur la mise en place d'un modèle
- Une acquisition de connaissance sur le « comportement » des sols face à l'érosion

Obj 4. Pistes de développement pour l'élaboration de nouveaux indicateurs de suivi :

 Nombreuses pistes évoquées à intégrer dans un programme d'acquisition de connaissances et de développement

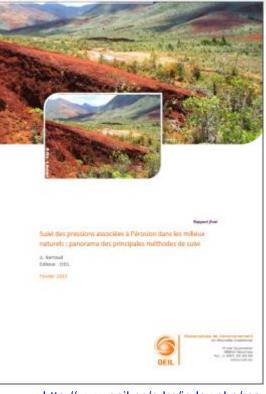
Perspectives

- → Vers une approche plus intégratrice du suivi de l'érosion?
- →Un programme d'acquisition de connaissances sur les sols de NC


MERCI DE VOTRE ATTENTION

Surveillance de la pression érosion dans les milieux naturels situés dans la zone d'influence du site industriel et minier du Sud de la Nouvelle-

Calédonie



http://www.oeil.nc/cdrn/index.php/resource/bibliographie/view/13961

Suivi des pressions associées à l'érosion dans les milieux naturels : panorama des principales méthodes de suivi

http://www.oeil.nc/cdrn/index.php/resource/bibliographie/view/9137

